
The persistance of strain in dynamical systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 971

(http://iopscience.iop.org/0305-4470/22/8/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 13:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 971-984. Printed in the UK 

The persistence of strain in dynamical systems 

E Dresselhaus and M Tabor 
Department of Applied Physics, Columbia University, New York, NY 10027, USA 
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Abstract. A dynamical exponent, termed the ‘persistence of strain’, is defined for systems 
of ordinary differential equations. Analogy with fluid dynamics suggests that it can provide 
a convenient-and easily computed-characterisation of a dynamical system and, in 
particular, the geometry of attracting sets. 

1. Introduction 

In this paper we suggest that a certain dynamical quantity, termed the ‘persistence of 
strain’, which has specific fluid mechanical applications, can also provide a useful 
geometrical characterisation of dynamical systems in general. The motivation for this 
idea is the much studied problem in polymer physics of polymer extension in a four 
(or more) roll mill (see, for example, Berry and Mackley 1977). Here, the two- 
dimensional velocity fields provided by this type of apparatus are of the ‘persistently 
extensional’ type required to obtain significant molecular stretching (Frank and 
Mackley 1976). Frank (see Berry and Mackley 1977, Frank and Mackley 1976) has 
suggested that these velocity fields are conveniently characterised by a quantity, the 
‘persistence of strain’, which is defined as follows. For a two-dimensional incompress- 
ible velocity field the velocity components can be defined in the usual way through a 
stream function $ = $(x, t )  (where x = (x, y ) ) ,  namely 

U = * y  U = -*,. 

w = T( U, - u y )  = -5v * The vorticity is 
1 1 2  

and the strain rate tensor is 

The principal rate of strain s is defined by 

s2=-de tS=’  4 ( * y y - * x x ) 2 + + , 2 , y .  (1.4) 

m(x, t )  =(s2 - -2 )1 ’2=  ( - - K ( + ) ) ” 2  

Using (1.2) and (1.3) the persistence of strain is now defined as 

(1.5) 

where K ( + )  is the determinant of the second derivative of 4, namely 

K ( * ) = * x x * y y - * : , .  (1.6) 

971 0305-4470/89/080971+ 14$02.50 @ 1989 IOP Publishing Ltd 
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K ( + )  can be thought of as an ‘unnormalised’ Gaussian curvature: it does reflect the 
curvature of fluid trajectories but cannot, for example, detect the difference in shape 
between two circular trajectories of radius p and p’  with p > p ’ .  (The normalised 
curvatures are l / p  and l/p’, respectively-the unnormalised curvature (1.6) is a 
constant for both cases.) Clearly U is only real when the unnormalised curvature of + is negative. It is precisely in this situation that the flow field is (locally) hyperbolic, 
thereby leading to exponential stretching of a fluid element and hence the possibility 
of significant polymer extension. If the flow is vorticity dominated, i.e. w 2 >  s2, U 

becomes imaginary and a fluid element will (locally) ‘tumble’ rather than ‘stretch’. We 
also note that it is often convenient to consider the squared persistence of strain as 
well, i.e. 

(1.7) 2 2  u 2 ( x ,  t )  = s - w . 

2. Persistence of strain in three dimensions 

The definition of u2 in terms of the unnormalised Gaussian curvature of the stream 
function is specific to two-dimensional problems and a natural question to ask is: how 
might such a quantity be (uniquely) defined for three-dimensional velocity fields or, 
for that matter, flow fields of any dimension? For now we concentrate on the physical 
problem of 3~ fluids and propose that the desired quantity is simply 

u 2 ( x ,  t )  = i Tr A2 (2.1) 

A,  = aJul i, j = 1,2,3. (2.2) 

where A is the velocity deformation tensor, i.e. 

If S is the symmetric (strain rate tensor) and R the antisymmetric (vorticity tensor) 
parts of A, respectively, i.e. 

s, =4(AlJ+AJl) a, = + ( A ,  -A,z )  (2.3) 

u 2 ( x ,  t )  =i Tr ( S + n ) 2  = i(Tr S2+Tr R2)  

then 

(2.4) 

where we have used the fact that antisymmetric tensors (the products SR and R S )  
have zero trace. In two dimensions the definition of U*, (2.1), is easily verified to be 
identical to the original definition (1.7). 

The tensor S has real eigenvalues s, and orthonormal eigenvectors 6 ,  so that 
Tr Sz = Z, sf. (Here g, are the principal directions of shear and s, are the associated 
principal shears.) Since Tr C12 = -E, wf, where w = i V  x U is the vorticity, the per- 
sistence of strain can be written as 

N 

d ( X ,  t )  = 4 c sf(x, t )  - Wf(X, t )  N =2,3 , .  . . .  (2.5) 
r = 1  

In this light U’ measures the balance between shear-dominated and vorticity-dominated 
flow about the point x. If U’ < 0 the flow is vorticity dominated; if u2 > 0 the flow is 
shear dominated. Note that Tr A = 0, so the principal shears s, and directions 6, are 
not mutually independent. In planar flow, we have only one shear and one vorticity, 
and the persistence of strain tells us exactly which of shear or vorticity dominates the 
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flow. The situation is different in three dimensions, where we have three components 
of shear and vorticity. Now we can have shear domination in one principal direction 
and vorticity domination about another. Thus, the persistence of strain in three 
dimensions gives a little less information about the exact nature of the local fluid flow 
than in two dimensions. 

The quantity U’ enjoys a number of nice physical properties. For example, if we 
have an incompressible viscous fluid in a two- or three-dimensional domain V, then 

To see this we write 

u’(x, t )  = 1 (diuj) (aju,) 
i J  

= V . ( u - V ) u  

where we have used the Leibnitz rule in the second line and the incompressibility 
condition diu,  = 0 in the third. Then, if fi(x) is the outward unit normal on d V :  

n * . ( u . V ) u d a = O  J v  (2.7) 

since uldV = 0 for solutions to the Navier-Stokes equations. Note that if viscosity is 
not present we have Euler’s equations and 6 0 uIJv = 0. Thus 

dx a 2 ( x ,  t )  = 1 uiuj ainj K ( t )  J v  J JV i , j  

is non-zero unless the walls of the domain have everywhere zero curvature, as dinj is 
just the curvature tensor. If the boundary conditions have no explicit time dependence 
then K is constant, and equation (2.8) is independent of time. K ( t )  in some sense 
measures the total amount of curvature of the fluid trajectories (normalised by a 
squared velocity) at the boundary of the vessel V at a time t. For both viscous and 
non-viscous steady flows equations (2.6) and (2.8) express ‘conservation laws’. These 
conservation laws make intuitive sense if we imagine circularly stirring a fluid in a 
small neighbourhood of a point xo. The stirring will cause local vorticity domination 
( ~ ’ < 0 ) .  Equations (2.6) and (2.8) mathematically express the fact that some shear 
must be produced in the vicinity of xo to balance the increased vorticity at x,,. 

The persistence of strain is a very simple quantity to calculate. Given a velocity 
field, Tr A’ is a trivial calculation and later we will show that it can also give non-trivial 
information about the dynamics of any ODE. If we are not given an explicit velocity 
field (as in almost all fluid mechanics applications), the persistence of strain is still 
reasonably easy to calculate. Finite-difference-style numerical computations of the 
Navier-Stokes equation invariably progress by guessing a pressure p ( x ,  t )  and using 
the derived velocity fields to refine the guessed pressure via 

v . (u .V)u=-V2p/p=u‘.  (2.9) 
Since the left-hand side is known, this is just the Poisson equation for p ( x ,  t ) .  This 
process is iterated and, hopefully, converges to a solution. The persistence of strain 
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can be calculated without additional effort. In contrast, most other combinations of 
derivatives A,  would require some numerical differentiation and increased round-off 
error. Spectral methods are the other major numerical tool for solving the fluid 
equations. Here, we use Fourier transforms to find an approximate solution to the 
two-dimensional vorticity equation 

awlat = - ( U  V ) W  + VV’W. (2.10) 

As in the case of finite-diff erence algorithms, we can easily calculate the persistence 
of strain. In two dimensions, after the stream function 4 is obtained from W(X, t )  by 
inverting 

-V2+(x, 1 )  = W(X, t )  (2.11) 

in Fourier space, we use (1 .5 )  to calculate c2. Evaluating the Gaussian curvature of 
is a simple matter in Fourier space. A similar method can be employed in the 

three-dimensional case. Overall the persistence of strain is as easily computed as other 
fluid dynamical quantities. 

So far we have only considered the persistence of strain in the Eulerian description, 
i.e. as a function of position, x, in the fixed coordinate frame of the fluid. It is, however, 
ideally suited for computation in the Lagrangian description, i.e. following individual 
fluid particle trajectories. For a given velocity field, U, the fluid particles satisfy the 
ordinary differential equations 

XI  = u,(x,  t )  

x 2  = U&, t )  

x3 = u3(x, t )  

and the local variations axi satisfy 

(2.12) 

(2.13) 

where A is, of course, just the velocity deformation tensor defined in (2.2). In the 
language of dynamical systems (2.13) is just the tangent map of the flow (2.12). For 
a given initial condition, xo, we can follow the persistence of strain along a fluid 
particle orbit and we call c2= u2(x0, t )  the strain history of that particle. Even very 
simple velocity fields can generate chaotic fluid particle trajectories (see, for example, 
Aref 1983, Chaiken et a1 1986) and we can expect a 2 ( x o ,  t )  to exhibit highly complex 
behaviour. 

For such trajectories we expect the strain history to oscillate wildly between shear 
domination and vorticity domination. This being so, it will be useful to calculate the 
power spectral density of U’: 

where 
+ X  

6.’(xo,f) = dt  exp(2.rrift)a2(xo, t ) .  (2.15) 

The Fourier representation gives us a good measure of the complexity of the flow. We 
expect that strains along chaotic trajectories will have very many significantly strong 
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modes in their power spectra, whereas power spectra of strains along regular trajectories 
will have but a few 6-function-like peaks. 

Another related quantity is the persistence of strain autocorrelation function: 
4 r+r 

C(xo, T )  = ( u 2 ( x o ,  t ) a 2 ( x o ,  t + T ) )  = lim 2- J dt  a 2 ( x o ,  t ) a 2 ( x o ,  t + T ) .  (2.16) 
r - t m  T -T 

C(xo, T )  is the Fourier transform of the power spectrum P ( x o , f )  (via the Wiener- 
Khinchin theorem), so we are really just looking at the same information in a different 
way. For periodic motions C(xo, T) will be periodic, and particle motions will remain 
well correlated for long times. For chaotic motions, we should expect that C(xo, T )  

falls off fairly rapidly, signifying that, after a fairly short time, particles completely 
lose memory of their past straining activity. (As an aside, we mention that we believe 
this correlation function to be the key quantity for studying the dynamics of polymers 
in turbulent flows. Understanding this process is crucial in a variety of problems 
including, particularly, that of drag reduction (see Tabor and de Gennes (1986).) It 
will also be of use to compare the Lagrangian correlation function (2.16) with its 
Eulerian counterpart, namely 

C’(& t ) = ( a 2 ( x ,  t ) d ( x + &  t))=- dxa2(x, t ) a 2 ( x + g ,  t )  
VOl(V) v 

(2.17) 

to extract characteristic length scales for the fluid flow. 

3. Numerical experiment: the ABC flows 

Here we illustrate numerically some of the ideas above. The Arnold-Beltrami-Childress 
(ABC) flows, generated from the velocity field 

u ( x )  = (A sin z +  C cosy, B sin x + A  cos z, C sin y + B  cos x)  (3.1) 

are steady-state solutions to Euler’s equation which exhibit a great variety of complex 
Lagrangian behaviour (see Dombre et al1986). Figure 1 ,  a Poincar6 plot of intersections 
with the z = 0 plane for A = 1, B = l / a ,  C = l / f i  (throughout we will consider only 
these parameter values), shows periodic orbits (to the left), a single chaotic trajectory 
(filling much of the right) and KAM surfaces breaking up (the island structures to the 
right amid the chaotic trajectory). It may be reasonable to anticipate that the ABC 

flows display Lagrangian behaviour that is, in some sense, typical of chaotic fluid flow, 
since many numerical schemes for solving the fluid equations use spectral expansions 
resulting in a Fourier expansion for the velocity fields (the ABC flow is itself a simple 
combination of trigonometric functions). True justification for this remark must, 
however, await the further investigation of real (numerical) solutions to the Navier- 
Stokes equation. In any case, the ABC flows are much more convenient to study than 
real flows, because of the simple analytic form of the velocity field. 

For the ABC flows the persistence of strain takes the simple form: 

u2(x,y, z ) =  -(BC cos x s i n y + A B  sin x cos z + A C  cosy sin z ) .  (3.2) 

Throughout these studies we take Xchaotic = ( O , O ,  0 )  and Xchaotic = ( T, T, 0) as initial 
conditions generating typical chaotic trajectories; we also take Xperiodic = (1,0,0) as 
generating a typical periodic trajectory. The quantities of interest (spectral densities 
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Y 

0 n 2n 

X 

Figure 1. Poincare plot of intersections with the z = 0 plane for A = 1 ,  B = l/&, C = l / d  
(after Dombre et al 1986). 

and autocorrelations) are qualitatively unchanged for both of these different choices 
of chaotic trajectory, as well as for initial conditions randomly chosen in some small 
ball about a chaotic one. Figures 2 ( a )  and (6) contrast u 2 ( x o ,  t )  for chaotic and 
periodic trajectories, respectively, and point to the necessity of using spectral quantities 
to unravel the wild oscillations of U’ for a chaotic trajectory. Figure 3 shows the 
average power spectrum P(f) for a chaotic trajectory. Averaging is performed over 
ten randomly chosen initial conditions in a ball of distance 0.1 units about xchaotic. 
The envelope lineshape of P(f) is quite insensitive to averaging or to the choice of 
(chaotic) initial condition. Averaging over different sets of these initial conditions 
changes only a few details of the power spectrum, and not its overall lineshape. The 
peaked nature of these spectra indicate that we could very crudely approximate 
a’( t )  = cos(fot), wherefo is the frequency at which the peak occurs. This approximation 
gives us a rough timescale, To= l/fo, at which particles jump from ‘eddy’ to ‘eddy’ 
(defined here as areas where U’ < 0). Power spectra of position and velocity for typical 
chaotic trajectories, shown in figures 4 ( a )  and ( b ) ,  decay exponentially as a function 
of frequency and have a fundamentally different shape from the power spectra of U’, 
(This is not surprising since U’, a derivative of U, has an entirely different physical 
interpretation.) Figure 5 shows the persistence of strain autocorrelation function, for 
typical chaotic trajectories, which decays rapidly to a regular oscillatory behaviour 
which persists even at the longest time lags. For comparison purposes we show in 
figures 6( a )  and ( b )  the autocorrelation functions of position and velocity, respectively. 
These autocorrelations exhibit the expected initial exponential fall-off typical of chaotic 
orbits. However, the long-time oscillations of these autocorrelation functions appear 
to be far less regular than those found for the persistence of strain autocorrelation. 
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- 3 1  , '( , , , , ( , , 
0 20 40 60 80 100 

Time, t 

I b l  
3 1  

0 20 40 60 80 100 

T ime,  t 

Figure 2. v2(xo, t )  for ( a )  typical chaotic and ( b )  periodic trajectories. 

12.5 

P(f I 

0 1.0 2.0 

Frequency f I H z I  

Figure 3. Power spectrum F'(f) of the persistence of strain averaged over close chaotic 
initial conditions. 

4. Persistence of strain as a dynamical exponent 

Although the persistence of strain has a natural fluid dynamical context we now suggest 
that it can be a useful-and very easily computed-quantity for characterising dynami- 
cal systems. Any motion governed by the system of ODE: 

dx/dt  = u(x ,  t )  x(0) = xg (4.1) 

are locally characterised by some combination of stretching and folding components. 
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Yll+-- 0 1.0 2.0 

77.51 I 

Frequency f (Hz) 

l b )  

0 1.0 2.0 

Frequency f I H z )  

Figure 4. Power spectra of ( a )  position x ( t )  and ( b )  velocity u ( t )  averaged over close 
chaotic initial conditions. 

0 20 40 60 80 100 

Time lag, T 

Figure 5. Typical persistence of strain autocorrelation ( c T ( t ) c T 2 ( t  + 7)) for a single chaotic 
trajectory. 

Stretching, whether expansive or contractive, comes from the real parts of the eigen- 
values of the tangent map matrix 

(4.2) A(x,, t )  = Du, A. .  V = 3.u. J 1 i, j = 1, , . . , N 

and folding from the imaginary parts of these eigenvalues. 
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52.5 n l a )  

0 20 40 60 80 100 

Time lag, T 

-1 14 I, 
0 20 40 60 BO 100 

Time Lag, T 

Figure 6. Typical position and velocity autocorrelations: ( a )  (x( f ) x (  t + T ) )  and ( b )  
( u ( t ) u ( f +  7)). 

If we are interested in characterising the balance between the stretching and folding 
actions of a dynamical system in terms of a single number (or 'exponent') we are 
naturally led to consider either determinants, det A", or traces, Tr A". In the case of 
determinants the relationship det A" = (det A)" cuts down the useful determinantal 
quantities to just det A itself. Furthermore, if the eigenvalues of A are complex 
conjugate pairs A i  = ai + ipi ,  then 

d e t A =  n (a;+p;) 
N 

j = 1  

in which case the contribution of real and imaginary parts cannot be separated out. 
Turning to trace quantities, the first trace, Tr A = A j ,  has the disadvantage that all 
the imaginary parts of the complex conjugate Aj will cancel out. Clearly the natural 
quantity is the second trace, namely 

N N 

j = 1  j = 1  
T r A Z =  A f =  (a;--;). (4.3) 

Evidently the sign and magnitude of Tr A' measures the balance between stretching 
and folding. In principle, one could also consider higher traces, i.e. Tr A", n 2 3 ,  but 
these quantities will involve complicated combinations of the cyj and pj that are difficult 
to interpret. The persistence of strain quantity (4.3) is clearly far easier to compute 
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along a system orbit than, say, the Lyapunov exponents and may indeed contain 
additional information since the latter quantity is, in effect, only concerned with the 
real parts of the eigenvalues. 

A simple way of gleaning global information from the persistence of strain is by 
averaging. Averaging the persistence of strain over a trajectory (or any flow-invariant 
set, for that matter) can give some notion of whether the set is dominated by stretching 
or folding. One problem is immediately apparent with averaging a2 in this way. The 
regions of stretch (a’ > 0) and fold (a2 < 0) when summed up will cancel in some 
complicated fashion. It is far more (physically) useful if we can separate these two 
types of region. This can be neatly accomplished with 

where I is some flow-invariant set (whether trajectory, limit cycle, attractor, etc). The 
square root nicely separates stretch from fold as the real and imaginary averages eRe 
and elm. To summarise this information it is useful to measure the ratio of stretch to 
fold, namely the quantity 

x = e R e /  @Im * (4.5) 

It is interesting to note that x is, in effect, the inverse of the so-called kinematical 
vorticity number proposed many years ago by Truesdell (1954). There, in a strictly 
fluid dynamical context, it was conjectured that a large value of this number would 
characterise a strongly turbulent flow field. 

The two numbers eRe( I )  and eIm( I )  give significant information about the shape 
of the invariant set I. The bifurcation of the Van der Pol equation: 

x = y + x(  p - x’) 

j = - x  (4.6) 

~ ~ ( ~ , y ) = i ( p - 3 ~ * ) ~ - 1  

as the parameter p goes from -1 through 0 to 1, gives a nice illustration of how these 
quantities can be used to characterise an attractor. Figure 7 shows how this bifurcation 
is characterised by the average persistence of strain. Comparison of figure 7 ( a )  with 
( b )  and (c) clearly shows how skewness of the limit cycle, increasing with positive p, 
is expressed by the number x( p ) .  

Along these lines, figure 8 shows how a trajectory of the ABC flows ( x , , , ~ ~ ~ , ~  = (0, 0,O)) 
makes the transition from regular (for C = 0) to chaotic behaviour (for C = I / f i ) .  
This sharp rise in x seems to be typical of the transition to chaotic dynamics. 

Figures 9 shows the Lorenz system: 
x = p ( y - x )  

a 2 ( x ,  y, Z) = i( p2+  b2+ 1) + p (  R - Z) - x2 

(4.7) 

for p = 10, b =$  and the Rayleigh number 2 0 s  R s 200. The persistence of strain 
average e is averaged over five randomly chosen initial conditions. We can see the 
sudden rise in x, corresponding to the appearance of a strange attractor at R 2: 24.7, 
the gradual fall in x, corresponding to the collapse to a limit cycle at R = 150, and the 
less violent, but still marked, rise corresponding to the second attractor at R = 166. It 
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0 1 2 

0 j, 
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Parameter, p 

Figure 7. The Van der Pol limit cycle as an example of how ,y can be used to characterise 
the geometry of an attracting set. (a )  shows the shape of the limit cycle for p =j, p = 1, 
/L =$  and = 2 .  ( b )  and ( c )  show how primarily circular motion (for p BO) becomes 
increasingly distorted as p increases, and how these changes in geometry are illustrated 
by the quantities 6( p )  and x( /L), respectively. In ( b )  0 plots d,, and 0 plots 6,m. 
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i b(Ci  0.25 ',.., 
* .  

0.2 0.4 0.6 
Parameter. C 

I . ,  t 

0 0.2 0.4 0.6 
Parameter, C 

Figure 8. ( a )  a ( C )  plotted against C and ( b )  x ( C )  plotted against C for the ABC flows 
with A = 1, B = 1 / d ,  and C in the range OS C S0.6,  passing through C = 1 / d ,  the 
canonical chaotic regime. Averaging was performed over the chaotic trajectory x , ~ ~ ~ ~ ~ ~  = 
(0, 0,O) for 3000 time units. The largest error here is for x ( f )  = 2.57 iO.01. In ( a )  0 plots 
a,, and 0 plots e,,,, . 

is unclear why this second attractor exhibits a less marked increase in x than the one 
at R = 24.7. 

Figure 10 shows the period-doubling transition from regular to chaotic motion in 
the Rossler system: 

1 = - ( y  + 2 )  

y=x+0 .2y  

z = 0.2 + xz - cz 
u 2 ( x ,  y ,  Z )  = i ( x  - c)*- 2-0.98. 

Again we have averaged over five random initial conditions. We note that the Rossler 
attractor (in its chaotic regime) is much more heavily dominated by stretching motions 
than the Lorenz attractor. The Rossler attractor attains a value of x over 30, whereas 
the Lorenz attractor only reaches about 1.5. 

The ragged bumps in these figures arise from numerical errors. It seems to be quite 
difficult to make these averages converge to any desired accuracy. The errors reported 
in the figures have been calculated by averaging the persistence of strain for an extra 
time (quite large relative to the total time of averaging), and measuring the difference 
between this longer average and the original one. 
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Rayleigh number, R 

Figure 9. ( a )  d ( R )  plotted against R and ( b )  x ( R )  plotted against R for the Lorenz 
system. Averaging was performed over five random initial conditions, each of which was 
averaged for 1000 time units. Errors were maintained so ,y is accurate to *0.01 throughout 
this range of R, though typically errors were an order of magnitude less than this figure. 
Note the almost discontinuous jumps in ,y around R =24.6 and 166.1. In (a )  0 plots bRe 
and 0 plots b,, . 

Changes in ,y do not necessarily distinguish regular from chaotic motions. Rather, 
a change in ,y indicates a change in the geometry of the attracting set (as illustrated, 
for example, by the distortion of the non-chaotic limit cycle of the Van der Pol 
oscillator). However, for the non-integrable systems that we have studied a sharp jump 
in ,y seems to indicate the appearance of chaotic motion. The ease with which x, as 
well as and e,,,,, can be obtained suggests that these numbers could provide a 
valuable diagnostic for charting regions of unknown dynamics in a large parameter 
space. 

We conclude, however, with a word of caution. All the examples given in this 
section are dissipative systems. In the case of conservative Hamiltonian systems of 
two or more degrees of freedom, u2 does not always appear to be a very useful quantity. 
For example, in the case of the Hknon-Heiles Hamiltonian 

one may easily determine that U' is a negative constant for all initial conditions. In 
cases such as this it may be necessary to go to higher traces to obtain the desired 
information. Alternatively, it is possible that we should try to calculate the persistence 
of strain using only the configuration space variables (the qi above), i.e. project out 

= s (P:  + p ; +  4: + 4:)  + 4:4* -54: (4.9) 
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Figure 10. ( a )  a( C )  and ( b )  ,y( C) for the Rossler attractor in the regime 2 s C s 7. x and 
d are averaged over five random initial conditions. Errors were maintained so that x is 
accurate to about 10.01. In ( a )  0 plots eRe and 0 plots elm. 

the momentum variables. The nature of U* and x for such Hamiltonians requires 
further investigation. 
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